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CuWO,, a Distorted Wolframite-Type Structure

By LARs KIHLBORG AND}ELIZABETH GEBERT*
Institute of Inorganic and Physical Chemistry, University of Stockholm, S-104 05 Stockholm, Sweden

(Received 17 July 1969)

The crystal structure of CuWO,, previously reported by the authors to be of a distorted wolframite
type, has been refined from single-crystal X-ray diffractometer data. The least-squares procedure in-
cluding anisotropic thermal parameters resulted in a conventional R=0-029. The structure is triclinic,
space group P1I, with unit-cell dimensions a=4-7026 (+6), b=5-8389 (+7), c=4-8784 (£6) A, a=
91-677 (£ 9), B=92-469 (+7) and y=82-805 (+10)°. The copper atom is surrounded by six oxygen
atoms, four of these in an approximately square planar configuration and the remaining two at a longer
distance completing an elongated octahedron. The tungsten atom is located within a slightly distorted
octahedron but is considerably displaced from its centre. Interatomic distances and angles are given.
The refinement gave no evidence for oxygen deficiency and new density measurements have given values
which, although still somewhat low, are closer to that expected for stoichiometric composition than was

the previously reported value.

Introduction

In a previous communication from this Institute we
reported a preliminary investigation of the crystal
structure of copper tungstate, CuWO,, which we found
to be a distorted version of the wolframite type (Ge-
bert & Kihlborg, 1967). Density measurements led us
to believe that our samples were strongly oxygen de-
ficient; hence we preferred to give the formula as
CuWO,-z. The study was based on photographically
recorded X-ray diffraction intensities obtained from a
twinned crystal. The relatively poor quality of the data
limited the degree of accuracy that could be achieved.
The final R value was 0-20.

* On leave from Argonne National Laboratory, Argonne,
Illinois, U.S.A.

When the preliminary investigation had reached a
final stage we found an untwinned single crystal of the
phase. This paper reports a refinement of the structure
based on diffractometer data obtained from this crystal.

Experimental

The crystal was selected from a sample prepared by
heating an equimolar mixture of CuO and WO,
(reagernit grade) in an evacuated platinum tube for 4
days at 800°C. The preparation did not appear
homogeneous under the microscope; it contained both
light yellow, well-developed crystals and amber-
coloured pieces with a glassy appearence. Its powder
pattern, however, showed only the lines characteristic
for CuWO,—, (Gebert & Kihlborg, 1967) and single-
crystal photographs revealed that both types of crys-
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tal were structurally identical although all species of
the clear yellow type that were examined exhibited
polysynthetic twinning. The crystals were twinned
across (010).

The unit-cell dimensions given in Table 1 were ob-
tained from a powder pattern recorded in a Guinier—
Hégg focusing camera using Cu Ku; radiation and KCl
as internal standard (¢=6-2919 A). The lattice param-
eters were refined using a least-squares program written
by P.-E. Werner at this Institute. Powder patterns were
recorded from several samples prepared but no signifi-
cant variations in the cell dimensions were observed.

Table 1. Crystallographic data for CuWO,
Symmetry: triclinic, space group PT
Unit-cell dimensions:

a= 47026(+6)A a=91-677 (+9)°
b= 58389(+7) B=92:469 (+7)
c= 48784 (+6) »=82-805 (+ 10)
V=132-73 A3

Z= 2

Density: Dmeas =7-61 —7-65 g.cm™3
Deare =7-790 g.cm™3

A chemical analysis of the phase gave 20-66% (by
weight) copper versus the theoretical 20-40% copper
content in CuWO,.

The density of the phase was determined previously
by pycnometric measurements and was reported to be
D=7-44 (+7) g.cm™3, This value is rather low com-
pared with that calculated for CuWO, (Table 1) and
was the main reason for our believing that this phase
normally exhibits a considerable oxygen deficiency.
New measurements, using a slightly more refined
pycnometric technique, have been made on another
sample which gave values within the range 7-61-
7-65 g.cm~3. Although still low compared with the
value calculated for CuWO,, the difference is not
necessarily significant since systematic errors of this
sign and magnitude are sometimes encountered in
density determinations on fine powders. Considering
the light colour and transparency of the crystals as well
as the result of the structure refinement, reported be-
low, we do not believe that the specimen used in our
investigation was significantly oxygen deficient. The
stoichiometry of CuWO, under various conditions will
be the subject of a separate study at this Institute.

The single-crystal studied was amber-coloured,
transparent and roughly prismatic with a length
(along a) of 0-22 mm and a maximum cross section of
0-085 mm. It was mounted on a manual diffractometer
(General Electric Single Crystal Orienter) and angle
settings were made for the 1111 reciprocal lattice points
for which />0 and sin26<0-30 (d>0-649 A). The
intensities were recorded according to the 6-26 scan
technique using Nb-filtered Mo K radiation.

All intensities for which Ifo(I) < 1-25 (I=net inten-
sity, o=standard deviation based on counting sta-
tistics) were rejected which left a set of 998 values for
use in the refinement.
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Refinement

The data were corrected for Lorentz and polarization
factors and also for the effect of absorption using a
local version of the program of Coppens, Leiserowitz
& Rabinovich (1965) modified by O. Olofsson and
M. Elfstrom, University of Uppsala. The total linear
absorption coefficient was assumed to be u=539-4
cm~l.

Starting from the parameters reported previously
(Gebert & Kihlborg, 1967) the initial least-squares
cycles were carried out with use of a block-diagonal
matrix program (SFLS, written by S. Asbrink, Univ.
of Stockholm and C.-I. Brandén, University of Upp-
sala, modified for IBM 1800 by B. Brandt, Univer,ity
of Stockholm). A full-matrix program (LALS, a local
version of the program UCLALS by Gantzel, Sparks
& Trueblood modified by R. Liminga, J.-O. Lund-
gren and C.-I. Brindén, University of Uppsala) was
used in the final stage.

The HFS atomic scattering factors given by Hanson,
Herman, Lea & Skillman (1964) were used and the
complex anomalous dispersion correction calculated
by Cromer (1965) was applied to the copper and
tungsten values in the last cycles of refinement. The
least-squares programs used minimize the function
>w(|Fol —|Fel)* and the weights were calculated ac-
cording to the expression suggested by Cruickshank,

w=(A+|Fo|+ C|Fo|>+ D|F,|3)1.

By inspection of the weight analysis the following
values of the constants in this formula were chosen for
the last cycles of refinement, 4A=113, C= —0-130 and
D=0-0030. The weight analysis obtained in the final
cvcle is given in Table 2.

Table 2. Weight analysis

A =||Fovs| — | Fearcl|, w=weighting factor, N=number of
independent reflexions. The w42 values have been normalized.

Fobs N wda?
0-0- 187 99 1-74
18-7- 27-1 100 0-94
27-1- 354 100 0-61
35-4- 426 100 073
42-6- 479 100 0-99
47-9- 53-6 99 1-02
53:6- 613 100 0-95
61-3~ 70-8 100 0-53
70-8— 868 100 0-64
86-8-151-2 100 1-86
sin 0 .
(x10%) N wd?
0-2553 121 1-94
2553-3216 111 1-37
3216-3682 98 0-47
3682-4052 110 0-71
4052-4365 91 0-86
4365-4639 104 0-78
4639-4883 104 0-85
4883-5106 88 0-63
5106-5310 87 1-04
5310-5500 84 1-10
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In the course of the refinement it became evident
that the strongest reflexions suffered seriously from
extinction since |Fops| Was consistently smaller than
|Feaiel. All data were then corrected for this effect by
applying the formula of Zachariasen (Zachariasen,
1963; Zachariasen & Plettinger, 1965) modified as des-
cribed by Asbrink & Norrby (1970). The necessary
functions were calculated by the absorption correction
program (Asbrink & Werner, 1966) and the empirical
constant entering into the calculations was obtained
in the usual way from the discrepancies between Fyps
and Feale (Asbrink & Werner, 1966).

Refinement of the extinction corrected data with
anisotropic thermal parameters for all atoms resulted
in a final reliability index R=3||Fo|—|Fd||/Z|Fol=
0-029. The final parameters are given in Tables 3 and 4.
Observed and calculated structure amplltudes are
listed in Table 5.

Table 3. Fractional atomic coordinates for CaWOQy,

All atoms in point position 2(i) of space group PT. E.s.d.’s are
given in brackets.

x . y z
Cu 0-49533 (16) 0-65976 (13) 0-24481 (15)
w 0-02106 (4) 017348 (3) 0-25429 (4)
o(1) 0-2491 (10) 0-3535 (8) 0-4245 (10)
0Q2) 0-2145 (10) 0-8812 (7) 0-4309 (9)
0@3) 0-7353 (10) 0-3803 (8) 0-0981 (9)
o) 0-7826 (9) 0-9079 (8) 0-0533 (9)

As mentioned above, there had been some doubt
concerning the oxygen content of the phase. Although
the isotropic B values obtained in-the course of the
refinement were normal and did not indicate vacancies
on any specific oxygen position — the Bo values were
equal within their standard deviations - a few refine-
ment cycles were performed in which an occupancy
parameter for each oxygen position was also refined. In
this case the program ORFLS by Busing, Martin &
Levy (1962) was used. The positional parameters did
not change significantly and the following values were
obtained for the occupancy parameters (standard de-
viations in parentheses): 094 (+£4), 101 (+4),

CuWO,s, A DISTORTED WOLFRAMITE-TYPE STRUCTURE

0-89 (+4) and 1-03 (4 4) for the oxygen atom posi-
tions 1 through 4. The deviations from unity are hardly
significant and cannot be used as a proof for oxygen
deficiency. The Bo values, which are strongly correlated
with the corresponding occupancy parameters (corre-
lation coefficients 0-79-0-82), were much more di-
vergent after this refinement.

Description

As mentioned above, our preliminary investigation of
this crystal structure suggested that it is a distorted
version of the wolframite type and this is definitely
confirmed by the present refinement.

The wolframite type structure is adopted by a
number of tungstates of AWQ, stoichiometry, 4 being
a sufficiently small divalent cation. At least four com-
pounds with this structure have been studied by single-
crystal methods, namely NiWO, (Keeling, 1957),
CdWO, (Chichagov, Ilyukhin & Belov, 1966), MnWOQO,
(Dachs, Stoll & Weitzel, 1967) and FeWO, (Ulkii,
1967). The last structure has been refined from X-ray
and neutron diffraction data to a high degree of ac-
curacy and is well suited for a comparison with CuWO,.

The normal wolframite structures are monoclinic,
space group P2/c, with both metal atoms situated on
twofold axes. They can be described as a framework
of oxygen atoms in an approximately hexagonal close-
packing with the cations occupying half of the octahe-
dral sites. Cations of each kind form layers which are
interleaved between the oxygen sheets in alternating
sequence (Fig.2). Infinite zigzag chains are formed by
edge-sharing octahedra containing like cations (Fig.1).

The above description applies also to the CuWO,
structure. The more irregular coordination required by
the copper atoms compared with iron, for example
(see below), is achieved primarily by a shear (not to be
confused with ‘crystallographic shear’) parallel to b
along each copper plane by which the oxygen layers
surrounding the copper atoms become slightly dis-
placed with respect to each other. This is evident in
Figs.1 and 2. The displacement destroys the twofold
symmetry and is directly reflected in the deviation of
the angle y from 90°.

Table 4. Thermal parameters
The B values refer to the temperature factor exp [— (#2811 +k2B22+ 12833+ 2hk P12+ 2hIB13+ 2kiB23)] .

R(i), i=1,3, are the r.m.s. components of thermal displacement (in A) along the principal axes of the ellipsoid of thermal vibra-
tion (calculated with the program ORFFE by Busing, Martin & Levy, 1964). E.s.d.’s in parentheses.

B B B33 b2 B3 B2
(x105) (%105 (x105) (% 10%) (x105) (x105) R(1) R(2) R(3)

Cu 587 (27) 429 (18) 428 (27) 184 (17) . —159 (22) —109 (18) 0-060 (5) 0-066 (4) 0-110 (3)
W as2(1)  238(7)  272(10)  26(5) —79(6) 17(5)  0051(2  0063(1) 0078 (1)

(x 104 (x 104 (x 109 (x10%) (x109 (x10%)
o(1) 85 (16) 55 (10) 61 (14) —4 (10) —13(12) —12 (10) 0-075 (20) 0-093 (16) 0-110 (17)
0(2) 91 (16) 34 (9) 57 (15) 24 (10) 2 (13) —8(10) 0-057 (24) 0-085 (14) 0-116 (14)
0Q@3) 85 (16) 50 (10) 45 (14) 19 (10) ~4(12) —8(10) 0-070 (19) 0-077 (21) 0-117 (15)
o4 79 (15) 60 (10) 35 (13) 3 (10) 0(12) 2 (10) 0-065 (13) 0-088 (15) 0-107 (14)
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It is evident from Fig.2 that the pseudo-hexagonal
oxygen layers are fairly smooth; the oxygen positions
lie within slices which are 0-235 A thick. In FeWO, the
corresponding value is 0-19 A. The separation of the
oxygen layers, defined as the distance between the
mean planes, is different across the tungsten and copper
layers. The separation of the planes surrounding the
tungsten atoms is very nearly the same in CuWQ, and
FeWO,, namely 2207 and 2-204 A respectively, but the
difference between the divalent ions gives rise to a
small difference in the distances between the planes
around these ions; they are 2:523 and 2458 A respec-
tively.

Coordination

Interatomic distances and bond angles are listed in
Table 6. When hexavalent tungsten is surrounded by
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six oxygen atoms, the coordination is generally irreg-
ular. This is seen to be the case also in the present
structure. The range for the six W—O distances is al-
most the same as in monoclinic WO; where it is
1:757-2:162 A according to a recent refinement
(Kihlborg, to be published). The higher symmetry of
FeWO, makes the W-O distances pairwise equivalent,
being 1-792 (+5), 1-905 (+6) and 2-124 (+5) A ac-
cording to Ulkii’s parameters based on neutron dif-
fraction data. These distances should be compared
with the mean values of the two shortest, the two inter-
mediate, and the two longest W-O bonds in CuWO,:
1:788, 1-916 and 2-118 A respectively. In the threefold
symmetrical tungsten coordination in Cu;WOg the
distances are 1-791 (£ 16) and 2-084 ( + 12) A (Gebert &
Kihlborg, 1969). The corresponding mean values of the
three shortest and the three longest bonds in CuWO,

Table 5. Observed and calculated structure amplitudes

The column headings are the index A, 10+|Fons| and 10¢|Feael
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are 1-807 and 2-075 A. There is thus a close similarity
between the W—O bond lengths in these structures
despite the difference in symmetry.

The copper coordination is subjected to the Jahn-
Teller distortion typical for divalent copper and which
gives rise to a considerable lengthening of two opposite
Cu-O bonds. The details of the coordination should
be evident from Table 6 and Fig.3. The same type of
distortion, even more pronounced, is present in CuO.
In that case the Cu-O distances are 19509 (+26),
1-9608 (+13) and 2-7840 (+37) A, each occurring
twice (Asbrink & Norrby, 1970). In CuMoO,, of a
structure entirely different from the present one
(Abrahams, Bernstein & Jamieson, 1968), two of the
three non-equivalent copper atoms have a similar
442 coordination, while the third is five-coordinated.
The equatorial Cu-O distances around the former
atoms range from 1-933 to 1-980 A, with an average of
1-956 A which is almost exactly the same as in CuO.
The corresponding average in CuWO, is 1:976 A. The
long Cu-O bonds in CuMoO, fall within the range
2:213-2-619 A with an average of 2-:312 A, only slightly
shorter than in the tungstate. Cu;WOgs has five-
coordinated copper atoms with the oxygen atoms
forming a somewhat distorted trigonal bipyramid
(Gebert & Kihlborg, 1969). Here, the five Cu-O
distances range from 1-921 to 2-243 A with a next-
nearest oxygen atom not closer than 3-10 A.

All oxygen atoms are bonded to three metal atoms
in a triangular arrangement. The oxygen atoms lie
fairly close to the triangular planes; the distances to
these planes are 0-184, 0-189, 0-140 and 0-272 A for
the oxygen atoms 1 to 4 respectively.

The deviation from closest packing of the anions is
demonstrated by the considerable divergence of the
close O-O distances. There are only 8 or 9 oxygen
neighbours within 3-0 A and the twelfth-nearest oxygen
atom, completing the coordination sphere, is found at
a distance up to 3-33 A. With three exceptions, all
oxygen atoms are more than 2-67 A apart. The two
shortest O-O separations, 2-411 and 2-507 A, are
along those edges in the WOg octahedron which are
shared with equivalent octahedra. Shortening of such
edges is a well-known phenomenon in polyhedra
around high-valence cations when no electrons are
available for direct metal-metal bonding. The effect
should be less pronounced in the copper-oxygen poly-
hedra because of the probably lower charge on the
copper atoms. Although the third shortest O-O
distance (2:625 A) is along one of the shared edges in
the CuQg octahedron, the other shared edge, O(1)-O(1),
is seen from Table 6 to be considerably longer than nor-
mal. This shortening and lengthening of the shared
edges can be considered as being mainly an effect of the
parallel displacement of the oxygen layers around the
copper atoms, mentioned above. In FeWO, the same
shared-edge shortening is observed within the tungsten
polyhedra (0O-0, 2-436 A) but is much less pronounced
in the FeOg octahedra where the O-O distances along

CuWO,, A DISTORTED WOLFRAMITE-TYPE STRUCTURE

the common edges are 2-918 A, insignificantly shorter
than the average length of the edges in these octahedra,
2985 A.

\“ proj.

Fig.1. The structure of CuWOy, projected on to the bc plane.
Three pseudo-hexagonal oxygen layers are indicated as
triangular nets: in the upper part of the Figure two layers
surrounding copper atoms (open circles) and in the lower
part two layers enclosing tungsten atoms (filled circles). The
top layer (full lines) of the upper part continues as the
bottom layer (hatched lines) in the lower half of the Figure.
For clarity the unit-cell axes have been displaced from the
origin which is situated halfway between the two upper left
tungsten atoms. The a direction is into the plane of the paper.

. ’ \,
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Fig.2. The structure of CuWO, depicted as linked octahedra,
viewed along the ¢ axis. Open and filled circles represent
copper and tungsten atoms, respectively.
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The root-mean-square components of thermal vi-
brations along the ellipsoid axes are given in Table 4.
It is seen that the anisotropy is rather small for the
tungsten atoms and hardly significant for the oxygen
atoms due to the large standard deviations. The values
for the copper atom, however, indicate a thermal
ellipsoid of nearly rotational symmetry and with one
axis considerably longer than the other two. This long
ellipsoid axis is directed approximately perpendicular
to the plane of Fig.3. The vibrational amplitude for the
copper atom is thus highest perpendicular to the short
Cu-O bonds. This is reasonable and was found to be
the case also in CuO (Asbrink & Norrby, 1970).

The authors are grateful for the continued interest
shown by Profcssor A. Magnéli in our studies of copper

Fig. 3. The coordination around vopper projected on to the
plane defined by the centres of the oxygen atoms (1a), (2a)
and (3a). The values in parentheses are the distances, in A,
of the other atoms above (+) or below (—) this plane.
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The Structure of 3,4:7,8-Dibenzotricyclo[4.2.0.025|octa-3,7-diene

By B.L.BARNETT AND RaYMOND E. DAvis
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

(Received 24 July 1969)

The structure of 3,4:7,8-dibenzotricyclo[4.2.0.02-5]octa-3,7-diene has been studied by single-crystal
diffraction techniques. This compound (Ci6H12) crystallizes in the monoclinic space group P2,/c, with
a=10716, b=7-706, c=6-719 A, p=98-37°, Z=2. The structure was determined by the symbolic
addition procedure and was refined by block-diagonal least squares methods to a final R value of 0-069,
including hydrogen atoms. The molecule is in the anti configuration, with two planar benzocyclobutene
systems on opposite sides of a planar central cyclobutane ring. The bridgehead bond, common to two
four-membered rings, is found to be unusually long, 1-593 A.

Introduction

Since the early fifties, transition metal complexes and
complex intermediates have become widely used for
producing many organic compounds which would
have been difficult or impossible to make otherwise. In
producing benzocyclobutadiene and cyclobutadiene
(Emerson, Watts & Pettit, 1965) by such methods many
new and interesting compounds have been isolated.
Three dimers of benzocyclobutadiene have been so pre-
pared (Emerson et al., 1965; Avram, Dinu & Nenit-
zescu, 1959; Cava & Napier, 1957). Formation of these
dimeric products of benzocyclobutadiene is dependent
upon different transition metals which act as catalysts.
The title compound, hereinafter referred to as DBTCO,
is the one of these dimers which was prepared using
nickel tetracarbonyl as a catalyst (Avram et al., 1959;
Cava & Napier, 1957). This compound has so far only
been isolated in one configuration, which has been
shown by Griffin & Weber (1961) to be anti.

In other systems containing four-membered rings,
the ring is in either the planar or the puckered confor-
mation, and often exhibits unusually long carbon-
carbon bond distances (Adman & Margulis, 1968).
Fusion of other rings to four-membered rings seems to
have varying effects on the cyclobutane ring geometry,
depending on the nature of the fusing rings (Margulis,
1965; Einstein, Hosszu, Longworth, Rahn & Wei,
1967; Adman, Gordon & Jensen, 1968; Camerman,
Weinblum & Nyburg, 1969; Camerman & Nyburg,
1969; Barnett & Davis, 1970). The present investiga-
tion was undertaken to determine the effect on ring

geometry of fusion of cyclobutane with two highly
strained four-membered rings.

Experimental

Suitable crystals for X-ray studies were obtained by
recrystallization of a sample of DBTCO, kindly sup-
plied by Professor R. Pettit, from an aqueous acetone
solution. These crystals are clear, light gray bulky
plates. The crystal used was approximately 0-068 x
0-126 x 0-194 mm with [001] parallel to the ¢ axis of the
goniometer. All X-ray studies were carried out using a
General Electric XRD-5 diffractometer equipped with
a single crystal orienter, with Cu K« radiation, and at
ambient room temperature (~21°C).

Plots of the intensity weighted reciprocal lattice were
used to determine the crystal symmetry. Cell constants
were obtained from least-squares refinement using 27
independent 20 measurements.

Crystal data
3,4:7,8-Dibenzotricyclo[4.2.0.02:5Jocta-3,7-diene,

CigHiz. a=10716 (2), 5=7-706 (1), ¢=6-719 (1) A,
B=98-37 (2)°. Systematic absences: hOl, I=2n+1;
0k0, k=2n+1. Space group: P2;/c (No. 14). Z=2;
F(000)=216; V=>548-86 A3;  u=5-38 (Cu Ko).
ACu Komean=1-54178, Cu Kua;=1:54050, Cu Ko,=
15433 A).

Three-dimensional single-crystal intensity data were
collected by the stationary-crystal stationary-counter
method to the limit 20=130° (Cu Ku,;), using a
balanced nickel-cobalt filter pair. Of the 925 in-



